Adaptive Digital Circuits for Power-Performance Range Beyond Wide Voltage Scaling: From the Clock Path to the Data Path

Adaptive Digital Circuits for Power-Performance Range Beyond Wide Voltage Scaling: From the Clock Path to the Data Path

  • 定價:5999

分期價:(除不盡餘數於第一期收取) 分期說明

3期0利率每期19996期0利率每期999
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可取貨點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
載入中...
  • 分享
 

內容簡介

This book offers the first comprehensive coverage of digital design techniques to expand the power-performance tradeoff well beyond that allowed by conventional wide voltage scaling. Compared to conventional fixed designs, the approach described in this book makes digital circuits more versatile and adaptive, allowing simultaneous optimization at both ends of the power-performance spectrum. Drop-in solutions for fully automated and low-effort design based on commercial CAD tools are discussed extensively for processors, accelerators and on-chip memories, and are applicable to prominent applications (e.g., IoT, AI, wearables, biomedical). Through the higher power-performance versatility techniques described in this book, readers are enabled to reduce the design effort through reuse of the same digital design instance, across a wide range of applications. All concepts the authors discuss are demonstrated by dedicated testchip designs and experimental results. To make the results immediately usable by the reader, all the scripts necessary to create automated design flows based on commercial tools are provided and explained.

 

作者簡介

Saurabh Jain received the bachelor’s and master’s degrees from Indian Institute of Technology, Kanpur, India, in 2012 and 2013 respectively, the Ph.D. degree from National University of Singapore, Singapore, in 2018. After his Ph.D. he worked as a postdoctoral research fellow at the Department of Electrical and Computer Engineering of the National University of Singapore. Currently he is working as a research scientist at the processor architecture research lab (PARL) at Intel Labs, Bangalore.

His research interest includes development of reconfigurable architectures for widely voltage-scalable memory and logic and general purpose compute-in-memory.

Longyang Lin received the dual bachelor’s degrees from Shenzhen University, Shenzhen, China and Umeå University, Umeå, Sweden, in 2011 and the master’s degree from Lund University, Lund, Sweden, in 2013, and the Ph.D. degree from the National University of Singapore, Singapore, in 2018. He is currently a postdoctoral research fellow at the Department of Electrical and Computer Engineering of the National University of Singapore.

His research interests include ultra-low power VLSI circuits, self-powered sensor nodes, widely energy-scalable VLSI circuits and general purpose compute-in-memory.

Massimo Alioto received the Laurea (MSc) degree in Electronics Engineering and the Ph.D. degree in Electrical Engineering from the University of Catania (Italy) in 1997 and 2001, and the Bachelor of Music in Jazz Studies from the Conservatory of Music of Bologna in 2007. He is with the Department of Electrical and Computer Engineering, National University of Singapore where he leads the Green IC group and is the Director of the Integrated Circuits and Embedded Systems area. Previously, he held positions at the University of Siena, Intel Labs - CRL (2013), University of Michigan Ann Arbor (2011-2012), BWRC - University of California, Berkeley (2009-2011), and EPFL (Switzerland, 2007).

He has authored or co-authored more than 280 publications on journals and conference proceedings. He is co-author of four books, including Enabling the Internet of Things - from Circuits to Systems (Springer, 2017), Flip-Flop Design in Nanometer CMOS - from High Speed to Low Energy (Springer, 2015), and Model and Design of Bipolar and MOS Current-Mode Logic: CML, ECL and SCL Digital Circuits (Springer, 2005). His primary research interests include self-powered wireless integrated systems, near-threshold circuits for green computing, widely energy- scalable and energy-quality scalable integrated systems, data-driven integrated systems, hardware-level security, and emerging technologies, among the others.

He is the Editor in Chief of the IEEE Transactions on VLSI Systems (2019-2020), and was the Deputy Editor in Chief of the IEEE Journal on Emerging and Selected Topics in Circuits and Systems (2018). In 2009-2010 he was Distinguished Lecturer of the IEEE Circuits and Systems Society, for which he is/was also member of the Board of Governors (2015-2020), and Chair of the "VLSI Systems and Applications" Technical Committee (2010-2012). In the last five years, he has given 50+ invited talks in top conferences, universities and leading semiconductor companies. His research has been mentioned in more than 60 press releases and popular science articles in the last two years. He served as Guest Editor of several IEEE journal special issues (e.g., TCAS-I, TCAS-II, JETCAS). He also serves or has served as Associate Editor of a number of IEEE and ACM journals. He is/was Technical Program Chair (ISCAS 2023, SOCC, ICECS, NEWCAS, VARI, ICM, PRIME) and Track Chair in a number of conferences (ICCD, ISCAS, ICECS, VLSI-SoC, APCCAS, ICM). Currently, he is also in the IEEE "Digital Architectures and Systems" ISSCC subcommittee, and the IEEE ASSCC technical program committee. Prof. Alioto is an IEEE Fellow.

 

詳細資料

  • ISBN:9783030387952
  • 規格:精裝 / 190頁 / 普通級 / 初版
  • 出版地:美國

最近瀏覽商品

 

相關活動

  • 【自然科普、電腦資訊】今周刊電子書全書系:數位時代,唯有熊彼得能創新未來,參展書單書85折、三書79折
 

購物說明

外文館商品版本:商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。關於外文書裝訂、版本上的差異,請參考【外文書的小知識】。

調貨時間:無庫存之商品,在您完成訂單程序之後,將以空運的方式為您下單調貨。原則上約14~20個工作天可以取書(若有將延遲另行告知)。為了縮短等待的時間,建議您將外文書與其它商品分開下單,以獲得最快的取貨速度,但若是海外專案進口的外文商品,調貨時間約1~2個月。 

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • 上半年暢銷
  • tarot
  • 聽讀展