1-1 概要
近年來很流行的一些科技名詞,如:人工智慧(Artificial Intelligence, AI)、機器學習(Machine Learning)、演算法(Algorithm)及大數據(Big Data)、黑盒子模式(Black Box Mode)。這些概念常被一些一知半解的媒體、或暢銷書寫成一團亂。有鑑於此,作者將徹底說明這些名詞的意義、相互關係及實際應用到底是什麼?主要目的是期望大家、及資訊專業人員都能清楚了解其中的涵意,進而避開媒體或暢銷書的愈說愈迷糊。這些看似複雜的名詞,都可以一言以蔽之就是電腦的行為。見下述:
• 人類的腦子叫人腦,對應到電子機器類稱為電腦。
• 人類的智慧對應到電腦的智慧稱為人工智慧。因為是人賦予電腦的智慧,故可稱為人工智慧。人工智慧是現階段的情況,以後可能會出現電腦製造下一代的電腦智慧。
• 人類解決各個問題的器具稱為工具,電腦解決各個問題的方法稱為演算法(Algorithm)。
• 人類的學習對應到電腦稱為機器學習。
• 人類依據經驗或是直覺的決策行為對應到電腦就稱為黑盒子模式,也就是一種機率及統計評估後的行為模式,或是直接執行特例的行為模式,也可將黑盒子模式理解為決策部分的演算法。
• 人類依賴過往經歷稱為經驗,對應到電腦累積的資料稱為大數據。
• 大數據是近年來才有的概念,電腦利用大數據的意涵,主要是指在強大的硬體帶來的大量數據量、快速的運算速度。
【現在AI與30年前的AI差在哪裡】
30年來,硬體與語法有大幅進步,更快的處理速度,處理更大量的數據,也收集更多資料,並利用更多統計與機率,讓電腦機器可以自主學習,才產生與以前相比更為聰明的AI,而為了區別,習慣用機器學習來稱呼現在的AI。
【對AI的謬誤】
1. AI不可能比人類聰明
答 機器的優勢是它有它的方法,如數據量、處理速度、出錯率等。人類不該讓機器全然學習我們的方法,因為我們的方法對機器來說可能是個笨方法,如同人製作飛機一開始使用仿生學(模仿動物)的方式,但並不適合人類。舉例來說AI計算圓周率有特有的方法,簡單又直接,換言之有著與人類不同的創造力,後面小節將會介紹。