前言
本書架構
第1章 AlphaZero 與機器學習概要
1-0 AlphaGo、AlphaGo Zero 與 AlphaZero
1-1 深度學習基礎
1-2 強化式學習基
1-3 賽局樹演算法基礎
第2章 準備 Python 開發環境
2-0 Google Colab 之概要
2-1 Google Colab 的使用方法
2-2 建構本地端的 Python 開發環境
第3章 深度學習
3-0 利用神經網路進行手寫數字辨識
3-1 利用神經網路預測住宅價格
3-2 利用卷積神經網路(CNN)進行影像辨識
3-3 利用殘差網路 (ResNet) 進行影像辨識
第4章 強化式學習
4-0 多臂拉霸機範例
4-1 利用策略梯度法 (Policy Gradient) 進行迷宮遊戲
4-2 利用 Sarsa 與 Q - Learning 進行迷宮遊戲
4-3 利用 Deep Q-Network 遊玩木棒平衡台車
第5章 賽局樹演算法
5-0 利用 Minimax 演算法進行井字遊戲
5-1 利用 Alpha-beta 剪枝進行井字遊戲
5-2 利用蒙地卡羅法進行井字遊戲
5-3 利用蒙地卡羅樹搜尋法進行井字遊戲
第6章 AlphaZero 的機制
6-0 利用 Tic-tac-toe 進行井字遊戲
6-1 對偶網路
6-2 策略價值蒙地卡羅樹搜尋法
6-3 自我對弈模組
6-4 訓練模組
6-5 評估模組
6-6 評估最佳玩家
6-7 執行訓練循環
第7章 人類與 AI 的對戰
7-0 建立執行 UI 的本機端開發環境
7-1 利用 Tkinter 建立 GUI
7-2 人類與 AI 的對戰
第8章 將 AlphaZero 演算法套用到不同遊戲上
8-0 四子棋
8-1 黑白棋
8-2 動物棋