客服公告:2025年博客來春節過年各項服務詳情

兒童故事小說展
Knock Knock!Deep Learning:新手入門深度學習的敲門磚(iT邦幫忙鐵人賽系列書)

Knock Knock!Deep Learning:新手入門深度學習的敲門磚(iT邦幫忙鐵人賽系列書)

  • 定價:560
  • 優惠價:9504
  • 本商品單次購買10本85折476
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 台北、新北、基隆宅配快速到貨(除外地區)
  • 分享

買了此商品的人,也買了...

上頁下頁
 

內容簡介

  本書內容改編自第12屆iT邦幫忙鐵人賽AI & Data組冠軍系列文章《Knock Knock!Deep Learning》,是專為深度學習初學者所規劃的內容,旨在以淺顯易懂的文字,帶領深度學習領域的新手度過入門撞牆期。內容從深度學習的基本理論開始,並以PyTorch框架的介紹過渡至應用篇,最後以自然語言處理、電腦視覺與強化學習等三大領域的經典論文與實作專案收尾,循序漸進且去蕪存菁。本書會帶入許多故事性的敘述和插圖,結合作者自身在史丹佛大學修讀碩士期間的學習心得,以及深度學習發展相關的故事,期使本書讀起來不會如教科書一樣厚重,亦不會像網路上的技術文章一般零散無脈絡,讓讀者對深度學習領域的發展有一定的概念。

  【內容重點】
  ✪了解深度學習的基礎理論以及必備的實作知識與工具
  內容從人類的神經網路開始,介紹深度學習與其相似之處,並理解神經網路的學習步驟,同時也介紹一些必備的實作知識與工具,以具備基本的實作工程技能。

  ✪入門深度學習框架PyTorch
  內容介紹語法簡潔、好上手且在學術界流行的PyTorch框架,著重實作與應用。

  ✪深度學習×自然語言處理×電腦視覺×強化學習
  內容會依序談到深度學習在三方面的應用,如自然語言處理(Natural Language Processing,NLP )、電腦視覺(Computer Vision,CV )、強化學習(Reinforcement Learning,RL )。除了基本簡介外,還會介紹一些基本實作和改變世界的技術成果。

  【適用讀者】
  ✪對深度學習有興趣,但還不知道它是什麼、能做什麼的新手。
  ✪零散讀過深度學習相關文章,但仍有知識缺口的入門者。
  ✪被教科書中龐大的數學理論嚇到,而對深度學習卻步的讀者。
  ✪正在上學校的深度學習課程,但不知道實作從何開始的學生。

本書特色

  最貼近新手的深度學習理論及應用全方位入門書!
  ✪學習必備理論,打好基礎,新手不怕被過多的數學式嚇跑。
  ✪使用PyTorch直覺易懂且強大的深度學習框架,開始應用的第一步。
  ✪了解自然語言處理、電腦視覺與強化學習等三大領域經典應用與實作,領略深度學習的強大。
  ✪兼顧理論與實作,而非偏頗一方,培養讀者較全面的理解。
  ✪包含經典學術論文與知名專案技術講解,幫助讀者掌握此技術所能到達的高度。
  ✪每章末提供自我檢驗題目,幫助理解與統整各章概念。
 
 

作者介紹

作者簡介

廖珮妤


  現任美國Twitter軟體工程師。曾任史丹佛大學CS224n課程助教、PyLadies社群電子報作者、北一女資訊研習社學術長,樂於以各種方式分享技術。超級費迷,喜歡的歌手是張雨生。

  2020年畢業後,決定將學生時期所學的深度學習知識與專案統整成「Knock Knock! Deep Learning」系列文,並於iT邦幫忙鐵人賽AI & Data組獲得冠軍。

繪者簡介

張巧心


  國立臺灣大學生物機電工程學系畢。作者的高中麻吉。興趣是隨手塗鴉,用畫筆記錄生活。
 
 

目錄

|Chapter 01| 導讀
1.1 什麼是深度學習?
1.2 會探討哪些技術?是否會不夠扎實?
1.3 需要哪些預備知識
1.4 深度學習的相關書籍這麼多,為什麼要看這本書?

|Chapter 02| 深度學習基礎理論
2.1 從人腦啟發的深度學習
2.2 什麼是訓練一個神經網路?
2.3 細解預測步驟:輸入、權重、激發
2.4 細解訓練步驟:損失、反向傳播、參數更新
2.5 自我檢驗

|Chapter 03| 深度學習必備實作知識與工具
3.1 Coding前你必須認識的工具
3.2 背考古題不算懂:訓練、測試、驗證集
3.3 幾分能力就做多少事:Overfitting、Underfitting、正則化
3.4 規格統一,做事更有效率:歸一化
3.5 參數初始化有套路
3.6 更優雅的進行優化
3.7 自我檢驗
3.8 參考文獻

|Chapter 04| PyTorch入門
4.1 深度學習框架之亂
4.2 PyTorch安裝
4.3 建立神經網路模型流程概述
4.4 基礎資料形式:Tensor
4.5 Tensor之間的連結網路:計算圖
4.6 PyTorch函數收納箱
4.7 PyTorch優化器
4.8 定義模型架構:Module
4.9 資料集處理
4.10 Hello Deep Learning! MNIST手寫數字辨識實作範例
4.11 自我檢驗

|Chapter 05| 自然語言處理
5.1 讓我著迷的Word2Vec
5.2 詞向量的使用與視覺化
5.3 語言與RNN
5.4 Hello RNN! 中文文本生成實作範例
5.5 打掉重練的勇氣:Google 翻譯與Seq2Seq
5.6 大躍進:注意力機制
5.7 注意力才是王道:Transformer
5.8 Hello Transformer! 二訪中文文本生成實作範例
5.9 再度大躍進:BERT
5.10 Hello BERT! 文字情緒分析實作範例
5.11 小結
5.12 自我檢驗
5.13 參考文獻

|Chapter 06| 電腦視覺
6.1 從ImageNet發起的資料大戰
6.2 圖像與CNN
6.3 文字也有結構,圖像也有序列
6.4 圖像描述生成實作範例
6.5 改變世界的GAN
6.6 字型風格轉換實作分享
6.7 小結
6.8 自我檢驗
6.9 參考文獻

|Chapter 07| 強化學習
7.1 決策與RL
7.2 用RL玩電動:Deep Atari
7.3 Hello RL! CartPole實作範例
7.4 用RL打撞球:DeepCueLearning實作分享
7.5 令世界驚艷的AlphaGo
7.6 小結
7.7 自我檢驗
7.8 參考文獻

|Chapter 08| 結語與解答
8.1 第二章解答
8.2 第三章解答
8.3 第四章解答
8.4 第五章解答
8.5 第六章解答
8.6 第七章解答
 

詳細資料

  • ISBN:9789864349180
  • 規格:平裝 / 240頁 / 17 x 23 x 1.54 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣

百貨商品推薦

上頁下頁

最近瀏覽商品

 
"上頁" "下頁"

相關活動

  • 【自然科普、電腦資訊】川普當選後比特幣再創新高,理財族更關心加密貨幣的機會!《幣漲無疑:加密貨幣,一場史詩級騙局?》
 

購物說明

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • 國中小參考書
  • 圖文療癒展
  • 三采童書展