前言
第 0 章 大數據商業應用的基礎知識與軟體介紹
0.1 數據特性
0.2 數據分析
0.3 本書理念
0.4 軟體介紹
0.5 線上教學資源
第 1 章 如何辨識競爭中的關鍵因素
1.1 樞紐分析的基本原理
1.2 實例操作 - 鐵達尼號存活旅客
1.3 章節練習 - 影響汽車銷售的重要因素
第 2 章 我的競爭對手在哪裡?策略群組的量化分析
2.1 非監督式 K-平均法(K-Means)以及監督式 K-近鄰(KNN)演算法的基本原理
2.2 K-Means 實例操作 - 商場客戶分組
2.3 KNN 實例操作 - 商場客戶分析
2.4 KNN 模型測試
2.5 商業應用 - 尋找距離最近的競爭對手
2.6 章節練習 - 競品麥片分析
第 3 章 預測客戶的下一步?網頁瀏覽行為預測
3.1 Apriori 關聯分析演算法的基本原理
3.2 實例操作 - 分析客戶下一個瀏覽的網頁
3.3 章節練習 - 預測客戶下一次瀏覽的新聞
第 4 章 這些商品放在一起很好賣!擬定賣場促銷方案
4.1 關聯分析的基本原理
4.2 實例操作 - 分析客戶一起購買的商品
4.3 章節練習 - 超商購物車商品分析
第 5 章 你的客戶可能會喜歡...會員制俱樂部如何推薦商品
5.1 推薦引擎與評分矩陣的基本原理
5.2 實例操作 - 會員對商品的評分預測(Rating Prediction, RP)
5.3 向會員推薦商品(Item Recommendation, IR)
5.4 章節練習 - 歌手推薦
第 6 章 買了此商品的客戶,也買了...電子商務如何推薦商品
6.1 基於商品推薦引擎的基本原理
6.2 實例操作 - 電影評分預測
6.3 向會員推薦電影
6.4 章節練習 - 線上商城
第 7 章 喜歡此商品的客戶,也喜歡...根據潛在喜好推薦電影
7.1 偏置矩陣分解的基本原理
7.2 實例操作 - 電影評分預測
7.3 向會員推薦電影
7.4 章節練習 - 美食服務平台
第 8 章 客戶是否真的會下單?客戶消費意願預測
8.1 單純貝氏演算法的基本原理
8.2 實例操作 - 客戶消費意願預測模型
8.3 預測客戶消費意願
8.4 章節練習 - 線上叫車平台推廣優惠券
第 9 章 哪些因素會影響銷售定價?房價預測
9.1 線性迴歸演算法的基本原理
9.2 最佳化步驟
9.3 實例操作 - 房價分析
9.4 房價預測
9.5 章節練習 - 紅酒等級評估
第 10 章 哪些客戶會違約?客戶貸款違約預測
10.1 邏輯斯迴歸演算法的基本原理
10.2 實例操作 - 銀行客戶貸款違約分析
10.3 模型調整
10.4 預測客戶是否違約
10.5 章節練習 - 信用卡用戶逾期還款
第 11 章 電話行銷應該打給哪些客戶?找出可能會買定存的客戶
11.1 支援向量機演算法的基本原理
11.2 實例操作 - 銀行客戶產品需求分析
11.3 模型調整
11.4 模型驗證
11.5 模型測試
11.6 章節練習 - 估計客戶的實際年收入
第 12 章 如何避免客戶流失?分類電信客戶跳槽名單
12.1 決策樹演算法的基本原理
12.2 決策樹實例操作 - 電信客戶跳槽分析
12.3 決策樹模型測試
12.4 隨機森林實例操作 - 電信客戶跳槽分析
12.5 隨機森林模型調整
12.6 隨機森林模型測試
12.7 章節練習 - 預測交易的公平性
第 13 章 如何預測公司未來的營收?銷售預測
13.1 ARIMA 演算法的基本原理
13.2 實例操作 - 每週銷售數據預測
13.3 模型調整
13.4 模型測試
13.5 章節練習 - Tesla 股價趨勢預測
結語