前言
「資料是新時代的石油」。石油需要經過勘探、開採、提煉才能成為石化產品,服務人類,表現價值。資料同樣需要經過治理和採擷才能產生價值。在資料治理和採擷的過程中,資料的應用面臨很多困難和挑戰。解決「資料孤島」問題是其中最突出的困難。隱私保護是近年來從個人使用者到政府都高度注意的內容。如何在保護個人隱私和資料安全的情況下,實現跨機構的資料聯合使用,是當前巨量資料產業和人工智慧技術應用的重要課題與探索方向。
2020年被認為是聯邦學習和隱私保護計算的應用重大突破點。無論是掌握最豐富資料資源的網際網路「大廠」,掌握大量金融資料的銀行和豐富通訊資料的電信企業,還是傳統的提供資料服務的第三方科技公司,都開始佈署聯邦學習,或提出應用架構框架,或結合業務建立產業解決方案。這既是資料共用和價值採擷具有巨大的應用需求與價值的表現,也是面對嚴格的法律和監管要求,資料相關工作的一種必然的選擇。
聯邦學習身為隱私保護計算技術,為資料的聯合建模和價值採擷提供了可行的解決路徑,正在實踐中高速發展。在金融科技發展的過程中,對於資料的跨機構聯合使用有強烈的應用需求。在打造世界一流金融控股集團的戰略目標過程中,作為金融科技產業的參與者,把在聯邦學習上的探索和實踐經驗分享給業界,希望為巨量資料和人工智慧在金融產業的實踐應用、數位經濟發展和企業數位化轉型貢獻一份力量。這也是我們撰寫本書的初心和動機。我們嘗試從聯邦學習發展的背景、技術方法和工具的原理、實踐的詳細過程、與金融業務相關的應用案例、應用展望等方面,多角度、多層次地展示聯邦學習及其在金融科技產業應用的全貌。
在撰寫本書的過程中,特別是在資料收集方面,我們獲得了光大科技有限公司巨量資料部門同事的大力幫助,在此特別向張明銳、凌立、周權、魏樂、額日和、盧格潤、彭成霞、原田、畢光耀、樊昕曄、李鈺、王義文、解巧巧等表示衷心的感謝。本書的撰寫和出版獲得了電子工業出版社博文視點公司石悅老師,從選題策劃到佈署謀篇等方面的幫助。我們也對石悅老師表達感謝。此外,我們還要特別感謝香港科技大學的楊強教授和聯邦學習FATE 開放原始碼社區創始人陳天健,他們閱讀了本書初稿並提出了很多寶貴的意見和建議,使我們對FATE 框架的介紹更加準確與深入。