國際書展暖身場
跟 NVIDIA 學深度學習!從基本神經網路到 CNN‧RNN‧LSTM‧seq2seq‧Transformer‧GPT‧BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎

跟 NVIDIA 學深度學習!從基本神經網路到 CNN‧RNN‧LSTM‧seq2seq‧Transformer‧GPT‧BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎

Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, Natural Language Processing, and Transformers Using TensorFlow

  • 定價:880
  • 優惠價:79695
  • 優惠期限:2024年12月31日止
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 台北、新北、基隆宅配快速到貨(除外地區)
載入中...
  • 分享
 

內容簡介

  ▍AI 界扛霸子 NVIDIA 的深度學習 (Deep Learning) 指定教材!

  ▍GPT、Transformer、seq2seq、self-attention 機制...大型語言模型 (LLM) 背後的先進技術「硬派」揭密!


  近年來,在 NVIDIA (輝達) GPU、CUDA 技術的推波助瀾下,深度學習 (Deep Learning) 領域有著爆炸性的成長,例如最為人知的 ChatGPT 正是運用深度學習技術開發出來的當紅應用。

  【★學深度學習,跟 AI 重要推手 - NVIDIA 學最到位!】

  除了硬體上的助益外,為了幫助眾多初學者快速上手深度學習,任職於 NVIDIA 的本書作者 Magnus Ekman 凝聚了他多年來在 NVIDIA 所積累的 AI 知識撰寫了本書。除了介紹深度學習基礎知識外,也包括此領域的最新重要進展。本書同時也是 NVIDIA 的教育和培訓部門 -【深度學習機構 (Deep Learning Institute, DLI)】 指定的培訓教材 (https://www.nvidia.com/zh-tw/training/books/)。

  要學深度學習,跟深度學習的重要推手 NVIDIA 學就對了!眾多紮實的內容保證讓你受益滿滿!

  【★機器視覺、生成式 AI 語言模型 100% 從零開始打造!】

  在深度學習的教學上,本書將從神經網路的底層知識 (梯度下降、反向傳播...) 介紹起,帶你打好深度學習的底子。接著會介紹用 Colab 雲端開發環境 + tf.Keras 建構、調校多層神經網路,以及經典的 CNN (卷積神經網路) 圖形辨識模型建構...等機器視覺主題。最後則邁入自然語言處理 (NLP) 領域,在介紹完基本的 RNN / LSTM 知識後,以先進的 Transformer、GPT...語言模型架構做結。

  尤其自從 ChatGPT 爆紅之後,自然語言處理 (NLP) 一直是深度學習的熱門研究話題,而這部分正是本書最精彩之處!

  RNN / LSTM 神經網路雖然問世已有一段時間,現今一些先進的 NLP 模型或許不會用它們來建構,但由它們衍生出來的 hidden state (隱藏狀態) 概念可說是重中之重,我們會帶你好好熟悉,以便能跟後續章節順利銜接上。

  之後則會利用各種神經網路技術帶你實作【多國語言翻譯模型】、【Auto-Complete 文字自動完成模型】...等範例。從處理原始文字訓練資料 → 切割資料集 → 建構模型 → 模型調校、優化,從頭到尾示範一遍,帶你紮穩大型語言模型 (LLM) 的建模基礎。

  令小編最印象深刻的是,本書所設計的 NLP 章節內容可說是「環環相扣」,從 RNN / LSTM 章節初次觸及 NLP 模型開始,次一章的模型架構幾乎都是為了解決前一章模型的特定問題而生的。這種層層舖墊的獨到方式能讓你深刻理解 RNN / LSTM / seq2seq / encoder-decoder / attention / self-attention 機制...等技術的發展脈絡,對於看懂 Transformer、GPT 等最先進的神經網路技術有莫大的幫助,這絕對是其他書看不到的精彩內容!

本書特色

  □【徹底看懂 ChatGPT 背後核心技術 - GPT 的模型架構】

  GPT、Transformer、encoder-decoder、seq2seq、self-attention 機制、attention 機制、query-key-value 機制、Multi-head、位置編碼 (positional encoding)、預訓練 (pre-train)、微調 (fine-tune)...各種建模技術輕鬆搞懂!

  □【生成式 AI 語言模型 100% 從零開始打造!】
  ‧用 Colab + tf.Keras 實作多國語言翻譯模型、Auto-Complete 文字自動完成模型
  ‧從處理原始文字訓練資料 → 切割資料集 → 建構模型 → 模型調校、優化,從頭到尾示範一遍,帶你紮穩大型語言模型 (LLM) 的建模基礎

  □【深度學習基礎知識學好學滿】
  ‧紮穩根基!不被損失函數 / 梯度下降 / 反向傳播 / 正規化 / 常規化…一拖拉庫技術名詞搞的暈頭轉向!
  ‧深度神經網路基礎 / CNN / RNN / LSTM...概念詳解。
  ‧多模態學習 (multimodal learning)、多任務學習 (multitask learning)、自動化模型架構搜尋...熱門主題介紹。

  □詳細解說, 流暢翻譯
  本書由【施威銘研究室】監修, 書中針對原書進行大量補充, 並適當添加註解, 幫助讀者更加理解內容!
 

作者介紹

作者簡介

Magnus Ekman


  現為 NVIDIA 架構總監,擁有資訊工程博士學位與多項專利。他於 1990 年代後期首次接觸人工神經網路、親身體會進化計算的威力後,開始鑽研計算機架構,並與妻兒遷往矽谷居住。他曾在昇陽電腦和 Samsung Research America 從事處理器設計和研發。他目前在 NVIDIA 領導一個工程團隊,負責開發自駕車、人工智慧 (AI) 資料中心專用的高效能、低功率 CPU。
 

目錄

Ch01 從感知器看神經網路的底層知識
1-1  最早的人工神經元 - Rosenblatt 感知器
1-2  增加感知器模型的能力
1-3  用線性代數實現神經網路模型

Ch02 梯度下降法與反向傳播
2-1  導數的基礎概念
2-2  以梯度下降法 (gradient descent) 對模型訓練問題求解
2-3  反向傳播 (back propagation)

Ch03 多層神經網路的建立與調校
3-1  動手實作:建立辨識手寫數字的多層神經網路
3-2  改善神經網路的訓練成效
3-3  實驗:調整神經網路與學習參數

Ch04 用卷積神經網路 (CNN) 進行圖片辨識
4-1  卷積神經網路 (CNN)
4-2  實作:以卷積神經網路做圖片分類
4-3  更深層的 CNN 與預訓練模型

Ch05 用循環神經網路 (RNN、LSTM...) 處理序列資料
5-1  RNN 的基本概念
5-2  RNN 範例:預測書店銷售額
5-3  LSTM (長短期記憶神經網路)
5-4  LSTM 範例:文字的 Auto-Complete 機制

Ch06 自然語言處理的重要前置工作:建立詞向量空間
6-1  詞向量空間的基本知識
6-2  做法(一):在神經網路建模過程中「順便」生成詞向量空間
6-3  做法(二):以 word2vec、GloVe 專用演算法生成詞向量空間

Ch07 用機器翻譯模型熟悉 seq2seq 架構
7-1  機器翻譯模型的基本知識
7-2  機器翻譯的範例實作
7-2-1  tf.Keras 函數式 API 簡介
7-2-2  建構模型前的工作
7-2-3  建構模型
7-2-4  訓練及測試模型
7-2-5  實驗結果

Ch08 認識 attention 與 self-attention 機制
8-1  熟悉 attention 機制
8-2  認識 self-attention 機制
8-2-1 self-attention 的基本概念
8-2-2 self-attention 機制的算法
8-2-3 multi-head (多頭) 的 self-attention 機制

Ch09 Transformer、GPT 及其他衍生模型架構
9-1  Transformer 架構
9-1-1 編碼器端的架構
9-1-2 解碼器端的架構
9-1-3 Transformer 內的其他設計
9-1-4 小編補充:觀摩 keras 官網上的 Transformer 範例
9-2 Transformer 架構的衍生模型:GPT、BERT
9-2-1  認識 GPT 模型
9-2-2  認識 BERT 模型
9-2-3 其他從 Transformer 衍生出的模型

附錄 A 延伸學習 (一):多模態、多任務...等模型建構相關主題
附錄 B 延伸學習 (二):自動化模型架構搜尋
附錄 C 延伸學習 (三):後續學習方向建議
附錄 D 使用 Google 的 Colab 雲端開發環境
 

詳細資料

  • ISBN:9789863127765
  • 規格:平裝 / 416頁 / 17 x 23 x 2.4 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣
 

書籍延伸內容

影片介紹

會員評鑑

4
2人評分
|
2則書評
|
立即評分
user-img
Lv.2
5.0
|
2024/10/10
沒看過原文本,但整體內容容易理解,只是程式碼並不是從頭用手刻,而是使用現有的function library, 沒有更深入
展開
user-img
Lv.1
2.5
|
2024/06/22
搞不懂施威銘研究室跟譯者在想什麼,翻譯就翻譯,沒叫你再創作。補一堆編註很有心,但你把書文版的內容進行刪減不知道是什麼意思?是想省頁數還是想省翻譯還是根本不會翻?如果你們要對原著進行再創作,至少也以學術的基本態度誠實向讀者宣布自己到底刪減了什麼內容;有時間寫一堆註解,不如好好地把原書的內容完整呈現。每本書的作者編排與其規劃、每字每句都是精雕細琢,最後才能出版呈現給讀者,作者對自己的內容負責。你們翻譯者跟研究室隨便刪減原作者的著作,連說明義務都沒盡,請問你們比原作者大?還是你們比讀者大,擁有那個裁量權決定什麼應該給讀者而什麼不該?如此傲慢的態度實在令人鄙夷。
展開

最近瀏覽商品

 

相關活動

  • 【自然科普、電腦資訊】張忠謀親筆撰寫、獨家授權自傳,他的一生,一場不能錯過的智慧盛宴!《張忠謀自傳》
 

購物說明

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • 兒童套書展
  • 年度選書
  • 城邦集團展