序言
本書的撰寫宗旨,不僅在説明什麼是「量子理論」,更在於解釋「為什麼「量子理論」是這樣的。因此,本書適宜物理專業的本科生「自修自習」,或作為「量子理論」相關課程的參考書:有助於糾正「物理概念」與加強「數學根基」。此外,對物理科學有興趣的哲學、工程、或數學專業學者,也可將本書作為「量子理論」的入門參考讀物。
約二十年前,作者將當時在「量子力學」課程方面的教學與研究心得,以中文撰述《量子力學——哲學概念與數學基礎(Quantum Mechanics—Philosophical Concepts and Mathematical Foundations)》(俊傑書局, 臺北, 2004, 1138頁)。由於篇幅所限,書中有甚多割捨之處。因此,七年後再補撰英文版的《Scientific Mathematics—Annotated Handbook(科學數學——注釋手冊)》(五南圖書出版公司, 臺北, 2011, 552頁)。有感於「統計物理」乃是「宏觀物理」的微觀基礎,而「量子理論」屬於「微觀理論」,須借助統計,才能解釋日常所見的「宏觀現象」。因此,接着再撰英文版的《Quantum Statistical Thermodynamics— Mathematics and Glossary》(Springer-Verlag, Berlin, 1010頁),並於2017年定稿,惜因版面及校對問題,一再拖延。後又因新冠疫情,至今尚未出版。「相對論」裏最重要的概念是「真空光速恆定」,而「量子理論」裏最重要的概念是「陰陽互補」,這也是「量子力學」大師,玻爾(N. H. D. Bohr, 1885-1962)所認同的。由於「陰陽」概念源於華夏文明裏的《易經》,故補撰《易經之科學——上帝也擲骰子》(元華文創, 臺北, 2019, 428頁)。
如今,作者與郭明剛博士合作,整理作者歷年來在美國聖母大學(University of Notre Dame)、台灣大學、福州大學、四川大學、與中國科學院大學的有關教學講義。再綜合前四書,並將有關「量子理論」以公設的形式,經由邏輯進行深入探討撰成此書,尤其附加「相對量子力學」與「量子場論」,以補前《量子力學》書之不足。此外,更從「量子規範場論(Quantum Gauge-Field Theory)」的典範,即「量子電動力學」的角度,將「量子碰撞」與「量子躍遷」展示為應用實例。
根據作者近五十年來,在美國、中國大陸與台灣的教學經驗,一般初學者對「量子力學」,往往「知其然,而不知其所以然」。例如,坊間介紹「量子力學」的書裏,大多沿襲德布羅意(L. V. D. de Broglie, 1892-1987)、海森伯(W. K. Heisenberg, 1901-1976)、狄拉克(P. Dirac, 1902-1984)、薛定諤(E. Schrӧdinger, 1887-1961)等人早年的講法,以「位置動量對易關係」 ,作為粒子運動的「基本假設」,來架構整個「量子力學」。這有點像西方魔術師,從硬頂禮帽裏變出一隻活生生的兔子;容易讓初學者有種「丈二金剛,摸不着頭腦」的感覺。因此,作者在前述《量子力學》書中為讀者解密:祇要假設粒子是以「複概密幅(complex probability-density amplitude)」 呈現於「位置空間」,則「位置動量對易關係」就可由數學上「混變數(random variable)」的概念,以嚴謹的邏輯推論得到。這裏的 就是所謂的「波函(wave function)」。
任何物理理論皆以實驗為基礎,「量子力學」也不例外。「量子力學」的建立,源於十九世紀末經典物理無法解釋的幾個實驗現象,如黑體輻射、光電效應、原子光譜規律、固體低溫比熱等。為解釋這些實驗現象而提出「波粒二象性(particle- wave duality)」概念:任何東西的「本質」皆為「粒子」,但其行為遵循「波動」的「規律」。在量子物理描述中,採用「波函」描述波粒二象性,其物理意義由玻恩(M. Born, 1882-1970)的「波函統計詮釋」給出。
在量子觀測中,由於觀測物理量的結果往往呈現為一個「概率分佈(probability distribution)」,即數學裏「混變數」處理的情況;因此,「量子力學」將觀測物理量的「範圍」與「概率」分開來處理。也就是將「觀測運作」與「觀測結果」分開,通過引入物理量對應的「測符(observable)」,並以其「徵值(eigenvalue)」來代表物理量的取值「範圍」;通過引入「態符(state operator)」來描述物理系統的狀態,並以測符與態符來共同決定物理量的取值「概率」。
目前我們知道,宇宙是由衆多不同類型的微觀粒子組成,各類型粒子又多到不可勝數。全部這些粒子憑藉相互作用,整體組合成「相干(coherent)」的「宇宙波函(wave function of the universe)」,這也就是「量子糾纏(quantum entanglement)」的肇始,而每次「觀測」都將造成部分「退相干(decoherent)」。此外,在宇宙裏,內稟屬性完全相同的微觀粒子定義為「等同粒子(identical particles)」。依據實驗觀察,交換等同粒子系統裏任意兩粒子,等同粒子系統的波函必須為「對稱」或「反稱」,由此可將等同粒子分為兩類:「費子(fermion)」與「玻子(boson)」,它們分別遵循「費米-狄拉克統計」與「玻色-愛因斯坦統計」。
「量子理論」屬於「微觀理論」,與統計物理密不可分。統計物理中最重要的概念就是「系綜」。系綜可分為「經典系綜(classical ensemble)」與「量子系綜(quantum ensemble)」,前者為「非相干系綜(incoherent ensemble)」,而後者為「相干系綜(coherent ensemble)」。在經典統計物理裏,利用「經典系綜」來描述大量微觀粒子所構成「宏觀物理系統」的狀態,一般皆為「混態(mix state)」。在量子統計物理裏,則必須利用「量子系綜」來描述「微觀物理系統」的「純態(pure state)」。不論在經典或量子物理裏,物理態皆可分為純態與混態。一般在傳統的經典力學裏,描述的皆為「純態」,無需引入系綜;因此,隱而不談「混態」。然而,在量子物理裏,純態則需用「量子系綜」來描述,而混態需同時用「量子系綜」與「經典系綜」來描述。當觀測考慮「混態」的物理量時,經典統計物理只需作「經典系綜平均」,而量子統計物理則必須先對「純態」作「量子系綜平均」,然後再對「混態「作「經典系綜平均」。
作者在前述《量子力學》一書的前幾章裏,沿着「量子力學」的緣起脈絡,作了綜合性的陳述。同時也將相關物理定律與實驗現象的發現,以及其在西方與中國古代的歷史淵源,作了概略性的介紹。有興趣的讀者可查閲。這對創新物理概念的觸發過程,有甚多值得「借鑒「之處。