BL輕小說展
機器學習的公式推導和程式實作

機器學習的公式推導和程式實作

  • 定價:580
  • 優惠價:79458
  • 優惠期限:2024年11月30日止
折價券 領取折價券
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 台北、新北、基隆宅配快速到貨(除外地區)
載入中...
  • 分享
 

內容簡介

  進行機器學習的開發時,精通相關數學理論是關鍵的基礎。本書基於對所有機器學習演算法的系統分類,詳細介紹了監督學習單模型、監督學習集成模型、無監督學習模型、概率模型等四大類共26個經典演算法,並進行詳細的公式推導和程式碼實現。旨在協助讀者充分了解演算法細節、實現方法和內在邏輯。

  本書適合數理基礎扎實的初學者,也適合深入學習的進階者閱讀,同時可作為機器學習領域的參考書籍。
 

作者介紹

作者簡介

魯偉


  深度學習演算法工程師,主要從事醫療數據分析、醫學圖像處理和深度學習應用相關研究與工作。著有《深度學習筆記》一書,也是機器學習實驗室的主持人。
 
 

目錄

第一部分:入門篇
第 1 章 機器學習預備知識

第二部分:監督學習單模型
第 2 章 線性迴歸
第 3 章 邏輯迴歸
第 4 章 迴歸模型擴展
第 5 章 線性判別分析
第 6 章 k 近鄰演算法
第 7 章 決策樹
第 8 章 神經網路
第 9 章 支援向量機

第三部分:監督學習整合模型
第 10 章 AdaBoost
第 11 章 GBDT
第 12 章 XGBoost
第 13 章 LightGBM
第 14 章 CatBoost
第 15 章 隨機森林
第 16 章 整合學習:對比與調參

第四部分:無監督學習模型
第 17 章 聚類分析與 k 均值聚類演算法
第 18 章 主成分分析
第 19 章 奇異值分解

第五部分:機率模型
第 20 章 最大訊息熵模型
第 21 章 貝氏機率模型
第 22 章 EM 演算法
第 23 章 隱馬可夫模型
第 24 章 條件隨機場
第 25 章 馬可夫鏈蒙地卡羅方法

第六部分:總結
第 26 章 機器學習模型總結

參考文獻

 
 

詳細資料

  • ISBN:9786263245365
  • 規格:平裝 / 376頁 / 17 x 23 x 1.75 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣

最近瀏覽商品

 

相關活動

  • 【自然科普、電腦資訊】童話裡的心理學【博客來電子書獨家-作者電子贈言簽名扉頁版】
 

購物說明

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • GL百合展
  • 墨刻紙電聯展
  • 室內設計展