★影像處理和畫質演算法的基礎原理
★底層視覺任務及其與其他視覺任務的關係
★影像成像過程、顏色及影調的影響因素
★降噪演算法的雜訊生成機制及經典方法
★超解析度演算法的傳統插值與深度學習策略
★霧天成像模型、去霧任務解決方法
★HDR定義、任務設定、經典演算法
★深度學習影像合成、和諧化技術
★影像增強、修飾的經典演算法
★傳統方法與深度學習方法
隨著人工智慧和電腦視覺技術的進步,影像處理和畫質演算法技術正邁入新時期。底層視覺任務相較於檢測和辨識類視覺任務,較少受到關注,主要集中在影像的成像品質,如雜訊、顏色和清晰度等。深度學習模型的強大歸納和學習能力,使得基於此技術的底層視覺演算法在許多場景下能達成傳統演算法無法實現的效果。
本書將引導讀者深入了解影像畫質演算法及底層視覺技術的基本原理和應用,全面介紹該領域的經典方案與最新發展,並深入剖析不同任務的定義、挑戰及解決思路,涵蓋經典演算法。書中同時兼顧傳統方法與深度學習方法,因為傳統方法在實際應用中仍然發揮著重要作用,其設計理念通常與任務的先驗設定密切相關,而設計深度學習模型時也常參考傳統方法。因此,分析傳統方法對於深入理解底層視覺任務至關重要。
此外,書中還會介紹一些較新的基於深度學習的演算法,特別是那些具有啟發性的演算法,以幫助讀者在需要時明確演算法的設計和改進方向,從而在影像處理領域中獲得更深入的理解與應用。