禮物季
Low Resource Social Media Text Mining

Low Resource Social Media Text Mining

  • 定價:3899

分期價:(除不盡餘數於第一期收取) 分期說明

3期0利率每期12996期0利率每期649
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
載入中...
  • 分享
 

內容簡介

This book focuses on methods that are unsupervised or require minimal supervision-vital in the low-resource domain. Over the past few years, rapid growth in Internet access across the globe has resulted in an explosion in user-generated text content in social media platforms. This effect is significantly pronounced in linguistically diverse areas of the world like South Asia, where over 400 million people regularly access social media platforms. YouTube, Facebook, and Twitter report a monthly active user base in excess of 200 million from this region. Natural language processing (NLP) research and publicly available resources such as models and corpora prioritize Web content authored primarily by a Western user base. Such content is authored in English by a user base fluent in the language and can be processed by a broad range of off-the-shelf NLP tools. In contrast, text from linguistically diverse regions features high levels of multilinguality, code-switching, and varied language skill levels. Resources like corpora and models are also scarce. Due to these factors, newer methods are needed to process such text.

This book is designed for NLP practitioners well versed in recent advances in the field but unfamiliar with the landscape of low-resource multilingual NLP. The contents of this book introduce the various challenges associated with social media content, quantify these issues, and provide solutions and intuition. When possible, the methods discussed are evaluated on real-world social media data sets to emphasize their robustness to the noisy nature of the social media environment.

On completion of the book, the reader will be well-versed with the complexity of text-mining in multilingual, low-resource environments; will be aware of a broad set of off-the-shelf tools that can be applied to various problems; and will be able to conduct sophisticated analyses of such text.

 

作者簡介

Shriphani Palakodety is a software engineer at Onai, USA.

Ashiqur Khuda Bukhsh is a project scientist at Carnegie Mellon University. He received his PhD in Computer Science from CMU.

Guha Jayachandran is the CEO and founder of Onai, USA. He received Ph.D. in Computer Science from Stanford University.

 

詳細資料

  • ISBN:9789811656248
  • 規格:平裝 / 普通級 / 初版
  • 出版地:美國

最近瀏覽商品

 

相關活動

  • 【自然科普、電腦資訊】童話裡的心理學【博客來電子書獨家-作者電子贈言簽名扉頁版】
 

購物說明

外文館商品版本:商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。關於外文書裝訂、版本上的差異,請參考【外文書的小知識】。

調貨時間:無庫存之商品,在您完成訂單程序之後,將以空運的方式為您下單調貨。原則上約14~20個工作天可以取書(若有將延遲另行告知)。為了縮短等待的時間,建議您將外文書與其它商品分開下單,以獲得最快的取貨速度,但若是海外專案進口的外文商品,調貨時間約1~2個月。 

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • tarot
  • 小物
  • 哈利波特