禮物季
Efficient Similarity Search Techniques for Textual and NonTextual Datasets

Efficient Similarity Search Techniques for Textual and NonTextual Datasets

  • 定價:1216
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
載入中...
  • 分享
 

內容簡介

In today’s information overloaded world, data has become the epicentre of the entire research. Textual data in the form of log, news papers, web documents, etc. is a key source of data analytics. Apart from textual contents, images, videos, audios generated by various handy devices are shared and downloaded by millions of users across the globe, every second. Finding similar items in such large and unstructured datasets (text and image) is indeed a challenging task. The exact match rarely has meaning in these environments; proximity or distance among the items is a preferred choice to identify similar items. In this work three similarity search approaches have been proposed: one for text documents and two for image datasets. For the textual data, a parallel similarity search approach has been proposed which uses Bloom filters for the representation of the features of the document and comparison with user’s query. Query features are stored in an integer array. The proposed approach uses approximate similarity search; has been implemented on Graphics Processing Unit (GPU) with compute unified device architecture as the programming platform. Two approaches have been proposed for image dataset. Both approaches uses Content Based Image Retrieval (CBIR). First CBIR approach named as ’Bi-layer Content Based Image Retrieval (BiCBIR) System’ consists of two modules: first module extracts the features of images in terms of color, texture and shape. Second module consists of two layers: initially all images are compared with query image for shape and texture feature space and indexes of M images similar to the query image are retrieved. Next, M images retrieved from previous layer are matched with query image for shape and color feature space and finally F images similar to the query image are returned as output. Second approach, Feature wise Incremental CBIR, named as FiCBIR, uses color, texture, and shape features. The retrieval process is accomplished in three layers, in the first layer complete dataset is searched but only one feature space is used. Top 10% of images most similar to query image are retained in the second layer. The second layer uses two features for similarity computation and only 50% of the most similar xiv images are passed to the third layer. Finally, the third layer uses all three features to compute the similarity. It has been experimentally proved that FiCBIR reduces the search space at subsequent layers by using multiple features for a reduced dataset in the final layer. The proposed CBIR approaches are evaluated on publicly available image datasets and experimental results validate the effectiveness of the approaches. The performance of both the approaches outperform the available state-of-the-art image retrieval systems in terms of precision, recall and f-score

 

詳細資料

  • ISBN:9780454091632
  • 規格:平裝 / 122頁 / 22.86 x 15.24 x 0.84 cm / 普通級 / 初版
  • 出版地:美國

最近瀏覽商品

 

相關活動

  • 【自然科普、電腦資訊】童話裡的心理學【博客來電子書獨家-作者電子贈言簽名扉頁版】
 

購物說明

外文館商品版本:商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。關於外文書裝訂、版本上的差異,請參考【外文書的小知識】。

調貨時間:無庫存之商品,在您完成訂單程序之後,將以空運的方式為您下單調貨。原則上約14~20個工作天可以取書(若有將延遲另行告知)。為了縮短等待的時間,建議您將外文書與其它商品分開下單,以獲得最快的取貨速度,但若是海外專案進口的外文商品,調貨時間約1~2個月。 

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • tarot
  • 小物
  • 哈利波特