禮物季
Trends of Artificial Intelligence and Big Data for E-Health

Trends of Artificial Intelligence and Big Data for E-Health

  • 定價:6599

分期價:(除不盡餘數於第一期收取) 分期說明

3期0利率每期21996期0利率每期1099
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
載入中...
  • 分享
 

內容簡介

This book aims to present evidence of the crucial importance of artificial intelligence and big data for medical decision making and data analysis in different fields of E-Health such as radiology, cancer prevention, drugs discovery, COVID-19 detection, AI and blockchain, cardiac imaging, cybersecurity, etc. Big data analytics and artificial intelligence have the potential to lead the methodology of healthcare providers using sophisticated technologies for accurate analysis of clinical data repositories and assist in making informed decisions, while ensuring confidentiality and data security. The challenges of intelligent Health depend basically on the opportunities provided by the community of experts to make health systems more sustainable. In intelligent healthcare, Big Data is based on massive data collected routinely or automatically, and stored electronically. The re-usability of this data could include links between existing databases to improve theperformance and efficiency of the health system.Big data and artificial intelligence data will produce significant and accurate results to support medical decision making. The process would benefit from patient’s data and their clinical history to support the experts in providing a more personalized medical overview. The intelligent health approach has the potential to allow a close surveillance of the patient’s progress during therapy.

 

作者簡介

Houneida Sakly is a PhD and Engineer in Medical Informatics. She is a member of the research program "deep learning analysis of Radiologic Imaging in Stanford university. Certified in Healthcare Innovation with MIT-Harvard Medical school. Her main field of research is the Data science (Artificial Intelligence, Big Data, blockchain, Internet of things...) applied in Healthcare.She is a member in the Integrated Science Association (ISA) in the Universal Scientific Education and Research Network (USERN) in Tunisia.Currently, she is serving as a lead editor for various book and special issue in the field of digital Transformation and data science in Healthcare.Recently, she has won the Best Researcher Award in the International Conference on Cardiology and Cardiovascular Medicine- San Francisco, United States.
Kristen Yeom is a Professor of Radiology at Stanford University with a research focus on clinical and translational studies of quantitative MRI. She is also on the executive board for Center for Artificial Intelligence in Medicine and Imaging at Stanford and serves as the Chair of the American Society of Pediatric Neuroradiology Grant Committee. Her recent works include radiomic and machine-learning strategies for brain tumor evaluation, as well as various computer vision tasks in clinical imaging towards precision. Dr. Safwan Halabi is an Associate Professor of Radiology at the Northwestern University School of Medicine, Vice-Chair of Radiology Informatics, and Associate CMIO at Lurie Children’s Hospital. He also serves as the Director of Fetal Imaging at The Chicago Institute for Fetal Health. He is board-certified in Radiology with a Certificate of Added Qualification in Pediatric Radiology. He is also board-certified in Clinical Informatics. He clinically practices fetal and pediatric imaging at Lurie Children’s Hospital. Dr.Halabi’s clinical and administrative leadership roles are directed at improving the quality of care, efficiency, and patient safety. He has also led strategic efforts to improve the enterprise imaging platforms at Lurie Children’s Hospital. He is a strong advocate of patient-centric care and has helped guide policies for radiology reports and image release to patients. He has published in peer-reviewed journals on various clinical and informatics topics. His current academic and research interests include imaging informatics, deep/machine learning in imaging, artificial intelligence in medicine, clinical decision support, and patient-centric health care delivery. He is currently the Chair of the RSNA Informatics Data Science Committee and serves as a Board Member for the Society for Imaging Informatics in Medicine.
Mourad Said, MD. Associate Professor in radiology and medical imaging since 2002. Member of the regional committee Africa-Middle East of the Radiological Society of North America RSNA 2014-2018. Author Reviewer for the prestigious Journal "Radiology" for many years. Different scientific presentations in RSNA meetings. He is board-certified in MRI from South Paris university. Qualifications in Pediatric/ Obstetric Radiology and MSK Imaging. He is actually interested in artificial intelligence in medical Imaging, deep learning and Radiomics with different publications. Jayne Seekins. Clinical Assistant Professor of Radiology, Stanford University. Research interests include fellow, resident and medical student education as well as Global Health.
Moncef TAGINA. Professor of Higher education and the co-founder of the COSMOS Laboratory in the National School of Computer Sciences (ENSI) in Tunisia (ENSI).He is the Director of the Doctoral School and President of the thesis committee .

 

詳細資料

  • ISBN:9783031112010
  • 規格:平裝 / 251頁 / 普通級 / 初版
  • 出版地:美國

最近瀏覽商品

 

相關活動

  • 【自然科普、電腦資訊】童話裡的心理學【博客來電子書獨家-作者電子贈言簽名扉頁版】
 

購物說明

外文館商品版本:商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。關於外文書裝訂、版本上的差異,請參考【外文書的小知識】。

調貨時間:無庫存之商品,在您完成訂單程序之後,將以空運的方式為您下單調貨。原則上約14~20個工作天可以取書(若有將延遲另行告知)。為了縮短等待的時間,建議您將外文書與其它商品分開下單,以獲得最快的取貨速度,但若是海外專案進口的外文商品,調貨時間約1~2個月。 

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • tarot
  • 小物
  • 哈利波特