國中小參考書首週
內容連載 頁數 5/9
這些例子顯示:一個區域的功能在很大程度上取決於它與哪些其他區域接線;如果這是真的,改變接線就可以改變它的功能。值得注意的是,這個原則已經獲得證實,透過「重新接線」,可以讓名義上為聽覺區的大腦皮質執行視覺功能。這方面的第一步,是在一九七三年由傑拉德.史耐德(Gerald Schneider)所踏出的,他發現一種巧妙的方法,可以改變剛出生倉鼠大腦中軸突的生長路線;他先破壞大腦的某些區域,再把視網膜細胞的軸突轉向,從原本該通往的正常目標(視覺路徑,改為通向替代目的地)聽覺路徑。最後造成的效果,就是視覺訊號被送到原本掌管聽覺的大腦皮質區域。

到了一九九○年代,米甘卡.蘇爾(Mriganka Sur)及其共同合作者開始研究這種重新接線造成的功能性後果。他們以雪貂為對象,重新進行史耐德的實驗步驟,結果顯示位於聽覺皮質部位的神經元,現在變成對視覺刺激產生反應。進一步而言,雪貂在其視覺皮質失去功能後仍然可以看得見,據推測應該就是用到聽覺皮質。這兩個證據都意味著聽覺皮質的功能已經改變為視覺了;類似的跨感官(cross-modal)可塑性在人類身上也觀察得到,例如:那些從小就看不見的盲人用指尖讀點字的時候,他們的視覺皮質會被活化。

這樣的研究結果與拉胥利的皮質「均勢論」學說一致,不過提出了一個重要的限制條件:大腦皮質區確實有學習任何功能的潛力,但前提是通往其他大腦區域的接線必須存在才行。如果皮質的每一區都和其他所有區有接線(還包括皮質以外的所有區域),那麼「均勢論」就可以在沒有任何附加條件的情況下成立了。若是接線能夠「全部通往全部」,那麼大腦豈不是可以更加靈活多變、更具彈性?也許確是如此,但是這樣的話大腦也會膨脹到驚人的大小。所有這些接線都得占用空間,也都會消耗能量;所以大腦顯然已經演化成最經濟的尺寸,這正是各個區域之間的接線為何會有選擇性的原因。
9上一頁 1 2 3 4 5 6 7 8 9 下一頁 跳到