古希臘人很清楚這些問題,(西元前五世紀的)哲學家伊里亞的芝諾(Zeno the Eleatic)就在一系列名稱有趣的矛盾問題中整理出了這些問題。以「阿奇里斯與烏龜」悖論(Achilles and the Tortoise)為例,阿奇里斯首先得追上他與烏龜之間距離的一半,接下是追上四分之一的距離,然後是八分之一的距離,以此類推,飛毛腿阿奇里斯永遠追不上緩慢的烏龜。但是我們從經驗得知,阿奇里斯一定會趕上他的慢動作對手,所以這個問題就引生了矛盾。另外,芝諾的「飛矢」悖論(“Arrow” paradox)聲稱一個填滿與自己體積相同空間的物體是靜止的。這個說法在箭矢飛行的每一個瞬間都成立,但這又導致了箭矢根本沒有移動的矛盾結果。芝諾的這些問題,源於不可分量本質上的矛盾,看起來雖然簡單,卻極難解決。