BL輕小說展
內容連載 頁數 9/10
古希臘人很清楚這些問題,(西元前五世紀的)哲學家伊里亞的芝諾(Zeno the Eleatic)就在一系列名稱有趣的矛盾問題中整理出了這些問題。以「阿奇里斯與烏龜」悖論(Achilles and the Tortoise)為例,阿奇里斯首先得追上他與烏龜之間距離的一半,接下是追上四分之一的距離,然後是八分之一的距離,以此類推,飛毛腿阿奇里斯永遠追不上緩慢的烏龜。但是我們從經驗得知,阿奇里斯一定會趕上他的慢動作對手,所以這個問題就引生了矛盾。另外,芝諾的「飛矢」悖論(“Arrow” paradox)聲稱一個填滿與自己體積相同空間的物體是靜止的。這個說法在箭矢飛行的每一個瞬間都成立,但這又導致了箭矢根本沒有移動的矛盾結果。芝諾的這些問題,源於不可分量本質上的矛盾,看起來雖然簡單,卻極難解決。

麻煩不只如此,有些量無法用公度量來比較,而不可分量理論卻與此相違背。舉例來說,假設兩條線的長度各為3 與5。顯然較短的這條線中有整整3 倍的長度1,而較長的那條線中有5 倍的長度1。因為兩條線都是長度1 的整倍數,我們稱長度1 為長度3 與長度5 兩條線的一個公度量(common measure)。同樣的,若有兩條線,長度各為3 1/2 與4 1/2 。兩者的公度量為1/2 ,也就是3 1/2 裡有7 倍的1/2 ,而4 1/2 有9 倍的1/2 。然而你若以正方形的邊長與其對角線為例,這個規則就不成立了。以現代的詞彙來說,我們會說這兩條線的比例是無理數√2。古人以不同的方式表達,他們有效地證明了這兩條線之間沒有公度量,或者可謂「不可公度量」(incommensurable)。這表示不論你將這兩條線各自分割多少次,抑或把這兩條線各自切得多細,你永遠都無法可以找出兩者的公度量。不可公度量為什麼會成為不可分量的問題?因為線條如果是由不可分量構成,那麼任何兩條線的數學原子量就會有一個公度量。但是兩條線若不可公度量,兩者就沒有共同的構成要素,也因此根本沒有數學原子、沒有不可分量。
10上一頁 1 2 3 4 5 6 7 8 9 10 下一頁 跳到